**Pressure**

**Pressure is a derived quantity
that is the quotient when dividing a applied force by the area
over which that force is applied.**

**Units for this quantity in
the British Engineering System are lbs/inch^2 (do not use p.s.i.).
In the metric system pressure is measured in Newtons/meter^2 which
is renamed the Pascal (Pa).
A barometer is the classic device for measuring atmospheric
pressure. It consists of an evacuated tube, open at the bottom,
in which atmospheric presssure supports a column of liquid. The
height of the liquid is preportional to atmospheric pressure.
In this application, units are often given as inches or mm of
Mercury.**

**A manometer is a U-shaed tube in which pressure is
measured as the difference in height of the fluid on each side.**

**A mechanical pressure guage registers fluid pressure
by the effects a fluid may have on the size or shape of the container.**

**A small pressure applied over
a large area can produce considerable force. Try the activity
as directed in the box below.**

Spread flat on a
table top a heavy-duty trash can liner. Use duct tape to seal
the open end. Place on the bag a piece of plywood 20 inches square
and at least 1/2 in thick. Around the perimeter of the plastic
bag in each of six places, cut a small hole large enough to accept
a soda straw. You may wish to seal the incision holes with duct
tape. Invite a heavy student (say 200 lbs) to sit on the board,
legs crossed. Enlist the aid of six students.Ask them to blow
on the soda straws. They will levitate their class mate if they
can muster a pressure of .5 lbs/in^2 . |

Pressure comes to bear around the footwear that you use. Calculate
the pressure under your shoe while standing with just one foot
on the floor. That pressure is enough to make you sink through
the surface of powdered snow. Don snow shoes or crosscountry skis.
While you maybe A pound or two heavier with the new apparatus,
the larger surface area significantly reduces the pressure under
foot. Now you have a chance to make it across a snow field.

**A smaller footprint means the
pressure underfoot increases dramatically. A woman momentarily
balancing on a single spike heel delivers enormous pressure under
that heel, enough to damage wooden floors, enough to distract
an assailant when driving that heel into his foot.
Ice skates are ground with a concave cross-section, causing the
blade to ride on two knife edges. The pressure under those edges
is great enough to melt ice. Water expands when it freezes. If
you can keep it from expanding, the very cold water will stay
in its liquid state and act as a lubricant. It re-freezes as soon
as the blade slides along. Avid outdoor skaters will note that
on very, very cold nights, relatively little ice liquefies and
skating is sluggish because the lubricating cold water is missing.**

**Fluids exert pressure by virtue
of their weight. A cubic foot of water weighs 62.4 lbs and so
it delivers to the surface on which it rests a pressure of 62.4
lbs/ft^2. Add another box o' water on top of the first and you
have doubled the pressure. From this simple reasoning we conclude
that the pressure at any depth of fluid is simply a function of
the depth of the fluid. In the equation that follows, h = fluid
depth, g = acceleration due to gravity, and rho is the mass density
of the fluid.**

**This equation works for most
purposes even at great ocean depths because water is for the most
part incompressible.**

**Other useful facts about fluid
pressure are:**

**1. Fluids at any given depth
exert the same pressure in all directons.**

**2. Fluid pressure is independent
of the shape of the container holding it.
**